Locked Nucleic Acid Gapmers and Conjugates Potently Silence ADAM33, an Asthma-Associated Metalloprotease with Nuclear-Localized mRNA

نویسندگان

  • Hannah M. Pendergraff
  • Pranathi Meda Krishnamurthy
  • Alexandre J. Debacker
  • Michael P. Moazami
  • Vivek K. Sharma
  • Liisa Niitsoo
  • Yong Yu
  • Yen Nee Tan
  • Hans Michael Haitchi
  • Jonathan K. Watts
چکیده

Two mechanisms dominate the clinical pipeline for oligonucleotide-based gene silencing, namely, the antisense approach that recruits RNase H to cleave target RNA and the RNAi approach that recruits the RISC complex to cleave target RNA. Multiple chemical designs can be used to elicit each pathway. We compare the silencing of the asthma susceptibility gene ADAM33 in MRC-5 lung fibroblasts using four classes of gene silencing agents, two that use each mechanism: traditional duplex small interfering RNAs (siRNAs), single-stranded small interfering RNAs (ss-siRNAs), locked nucleic acid (LNA) gapmer antisense oligonucleotides (ASOs), and novel hexadecyloxypropyl conjugates of the ASOs. Of these designs, the gapmer ASOs emerged as lead compounds for silencing ADAM33 expression: several gapmer ASOs showed subnanomolar potency when transfected with cationic lipid and low micromolar potency with no toxicity when delivered gymnotically. The preferential susceptibility of ADAM33 mRNA to silencing by RNase H may be related to the high degree of nuclear retention observed for this mRNA. Dynamic light scattering data showed that the hexadecyloxypropyl ASO conjugates self-assemble into clusters. These conjugates showed reduced potency relative to unconjugated ASOs unless the lipophilic tail was conjugated to the ASO using a biocleavable linkage. Finally, based on the lead ASOs from (human) MRC-5 cells, we developed a series of homologous ASOs targeting mouse Adam33 with excellent activity. Our work confirms that ASO-based gene silencing of ADAM33 is a useful tool for asthma research and therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locked Nucleic Acid gapmers and conjugates induce potent silencing of ADAM33, an asthma-associated metalloprotease with nuclear-localized mRNA

Two mechanisms dominate the clinical pipeline for oligonucleotide-based gene silencing, namely the antisense approach that recruits RNase H to cleave target RNA and the RNA interference (RNAi) approach that recruits the RISC complex to cleave target RNA. Multiple chemical designs can be used to elicit each pathway. We now compare the silencing of the asthma susceptibility gene ADAM33 in MRC-5 l...

متن کامل

Antisense locked nucleic acids efficiently suppress BCR/ABL and induce cell growth decline and apoptosis in leukemic cells.

Chronic myeloid leukemia (CML) develops when a hematopoietic stem cell acquires the Philadelphia chromosome carrying the BCR/ABL fusion gene. This gives the transformed cells a proliferative advantage over normal hematopoietic cells. Silencing the BCR/ABL oncogene by treatment with specific drugs remains an important therapeutic goal. In this work, we used locked nucleic acid (LNA)-modified oli...

متن کامل

Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides

Gapmer antisense oligonucleotides cleave target RNA effectively in vivo, and is considered as promising therapeutics. Especially, gapmers modified with locked nucleic acid (LNA) shows potent knockdown activity; however, they also cause hepatotoxic side effects. For developing safe and effective gapmer drugs, a deeper understanding of the mechanisms of hepatotoxicity is required. Here, we invest...

متن کامل

Increased expression of ADAM33 protein in asthmatic patients as compared to non-asthmatic controls

BACKGROUND & OBJECTIVES ADAM33 is a member of a family of genes that encode membrane-anchored proteins with a disintegrin and a metalloprotease domain, primarily expressed in lung fibroblasts and bronchial smooth muscle cells. ADAM33 has been identified as a risk factor for asthma and is known as a gene associated with airway remodelling. The present study was conducted with the aims to investi...

متن کامل

A cytoplasmic pathway for gapmer antisense oligonucleotide-mediated gene silencing in mammalian cells

Antisense oligonucleotides (ASOs) are known to trigger mRNA degradation in the nucleus via an RNase H-dependent mechanism. We have now identified a putative cytoplasmic mechanism through which ASO gapmers silence their targets when transfected or delivered gymnotically (i.e. in the absence of any transfection reagent). We have shown that the ASO gapmers can interact with the Ago-2 PAZ domain an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017